Recurrent adaptive introgression of a supergene variant that determines social organization

Anderson, E. Introgressive hybridization (J. Wiley, 1949).
Harrison, RG & Larson, EL Hybridization, introgression, and the nature of species boundaries. J. Hered. 105795–809 (2014).
Yeaman, S. & Whitlock, MC The genetic architecture of adaptation under the migration-selection balance. Evolution 651897-1911 (2011).
Thompson, MJ & Jiggins, CD Supergenes and their role in evolution. Heredity 1131–8 (2014).
Kirkpatrick, M. How and Why Chromosomal Inversions Evolve. PLoS Biol. 8e1000501 (2010).
Jay, P et al. Supergene evolution triggered by the introgression of a chromosomal inversion. Running. Biol. 281839–1845.e3 (2018).
Edelman, NB et al. Genomic architecture and introgression shape butterfly radiation. Science 366594-599 (2019).
Norris, LC et al. Adaptive introgression in an African malaria mosquito coinciding with increased use of insecticide-treated nets. proc. Natl Acad. Science. UNITED STATES. 112815–820 (2015).
Brion, C., Caradec, C., Pflieger, D., Friedrich, A. & Schacherer, J. Pervasive phenotypic impact of a large non-recombinant introgressed region in yeast. Mol. Biol. Evol. 372520-2530 (2020).
Dixon, G., Kitano, J. & Kirkpatrick, M. The origin of a new sex chromosome by introgression between two sticklebacks. Mol. Biol. Evol. 3628–38 (2019).
Ross, KG & Keller, L. Ecology and evolution of social organization: insight into fire ants and other highly eusocial insects. Ann. Rev. School. System 26631–656 (1995).
Google Scholar
Wang, J. et al. A Y-type social chromosome causes alternate colony organization in fire ants. Nature 493664–668 (2013).
Keller, L. & Ross, KG Selfish genes: a green beard in the red fire ant. Nature 394573-575 (1998).
Pracana, R. et al. Fire ant social chromosomes: differences in number, sequence, and expression of odorant-binding proteins. Evol. Lett. 1199-210 (2017).
Cohanim, AB, Amsalem, E., Saad, R., Shoemaker, D. & Privman, E. Evolution of olfactory functions on the fire ant social chromosome. Genome Biol. Evol. ten2947-2960 (2018).
Martinez-Ruiz, C. et al. Genomic architecture and evolutionary antagonism result in allelic expression bias in the social supergene of red fire ants. eLife 9e55862 (2020).
Stolle, E. et al. Degenerative expansion of a young supergene. Mol. Biol. Evol. 36553–561 (2019).
Yan, Z et al. Evolution of a supergene that regulates a trans-species social polymorphism. Nat. School. Evol. 4240-249 (2020).
Krieger, MJB & Ross, KG Identification of a major gene regulating complex social behavior. Science 295328–332 (2002).
Cohen, P. & Privman, E. The social supergene dates back to the speciation time of two Solenopsis species of fire ants. Science. representing ten11538 (2020).
Wurm, Y. et al. The fire ant genome Solenopsis invicta. proc. Natl. Acad. Science. UNITED STATES. 1085679–5684 (2011).
Privman, E. et al. Positive selection on sociobiological traits in invasive fire ants. Mol. School. 273116–3130 (2018).
Seppey, M., Manni, M. & Zdobnov, EM BUSCO: Evaluation of genome assembly and annotation completeness. Methods Mol. Biol. 1962227-245 (2019).
Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: Polynomial reconstruction of temporal species trees from partially resolved genetic trees. BMC Bioinform. 19153 (2018).
Google Scholar
Shoemaker, DD, Ahrens, ME & Ross, KG Molecular phylogeny of fire ants from the Solenopsis saevissima group of species based on mtDNA sequences. Mol. Phylogenet. Evol. 38200–215 (2006).
Fontana, S. et al. The social supergene of the fire ant is characterized by a large variation in the number of copies of genes and transposable elements. Mol. School. 29105-120 (2020).
Kubatko, LS & Degnan, JH Inconsistency of phylogenetic estimates from concatenated data under coalescence. System Biol. 5617–24 (2007).
Martin, SH & Van Belleghem, SM Exploring evolutionary relationships across the genome using topological weighting. Genetic 206429–438 (2017).
Ross, KG & Trager, JC Systematics and population genetics of fire ants (Solenopsis saevissima complex) from Argentina. Evolution 442113-2134 (1990).
Cohen, P. & Privman, E. Speciation and hybridization in invasive fire ants. BMC Evol. Biol. 19111 (2019).
Adams, BJ, Hooper-Bùi, LM, Strecker, RM & O’Brien, DM Raft formation by the red imported fire ant, Solenopsis invicta. J. Insect Sci. 11171 (2011).
Tschinkel, WR fire ants (Harvard Univ. Press, 2006).
Ross, KG & Shoemaker, D. Unexpected patterns of segregation distortion in a selfish supergene in the fire ant Solenopsis invicta. BMC Genet. 19101 (2018).
DeHeer, CJ, Goodisman, MAD & Ross, KG Queen dispersal strategies in the multi-queen form of the fire ant Solenopsis invicta. A m. Nat. 153660–675 (1999).
Google Scholar
DeHeer, CJ A comparison of the queen colony founding potential of single and multi-queen colonies of the fire ant Solenopsis invicta. Anim. Behviour 64655–661 (2002).
Google Scholar
Pracana, R., Priyam, A., Levantis, I., Nichols, RA, and Wurm, Y. The fire ant social chromosome supergene Sb variant shows low diversity but high divergence from SB. Mol. School. 262864-2879 (2017).
Hallar, BL, Krieger, MJB & Ross, KG Potential cause of lethality of an allele implicated in the social evolution of fire ants. Genetic 13169-79 (2007).
Kirkpatrick, M. & Barton, N. Chromosomal inversions, local adaptation and speciation. Genetic 173419-434 (2006).
Berdan, EL, Blanckaert, A., Butlin, RK, and Bank, C. Accumulation of deleterious mutations and the long-term fate of chromosomal inversions. PLoS Genet. 17e1009411 (2021).
Jay, P et al. The mutation load of a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat. Broom. 53288-293 (2021).
Tuttle, EM et al. Divergence and functional degradation of a sex chromosome-like supergene. Running. Biol. 26344-350 (2016).
Kupper, C. et al. A supergene determines highly divergent male reproductive morphs in the collarette. Nat. Broom. 4879–83 (2016).
Butlin, RK & Day, TH Gene and karyotypic selection on an inversion polymorphism in the algal fly, Coelopa frigida. Heredity 54267–274 (1985).
Google Scholar
Moreau, CS & Bell, CD Test of the museum versus cradle of tropical biological diversity hypothesis: phylogeny, diversification and evolution of the ancestral biogeographical area of ants. Evolution 672240-2257 (2013).
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at arXiv [q-bio.GN] (2012).
Darriba, D. et al. ModelTest-NG: a new evolutionary tool for the selection of evolutionary DNA and protein models. Mol. Biol. Evol. 37291–294 (2020).
Kozlov, AM, Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A rapid, scalable, and user-friendly tool for maximum probability phylogenetic inference. Bioinformatics 354453–4455 (2019).
Galili, T. dendextend: an R package for visualizing, tuning and comparing hierarchical clustering trees. Bioinformatics 313718–3720 (2015).
Ward, PS, Brady, SG, Fisher, BL & Schultz, TR The evolution of myrmicine ants: phylogeny and biogeography of a clade of hyperdiverse ants (Hymenoptera: Formicidae). System Entomol. 4061–81 (2015).
Google Scholar
Minh, BQ et al. IQ-TREE 2: new models and efficient methods of phylogenetic inference in the genomic era. Mol. Biol. Evol. 371530-1534 (2020).
Green, RE et al. A draft Neanderthal genome sequence. Science 328710–722 (2010).