Recurrent adaptive introgression of a supergene variant that determines social organization

  • Anderson, E. Introgressive hybridization (J. Wiley, 1949).

  • Harrison, RG & Larson, EL Hybridization, introgression, and the nature of species boundaries. J. Hered. 105795–809 (2014).

    Google Scholar PubMed

  • Yeaman, S. & Whitlock, MC The genetic architecture of adaptation under the migration-selection balance. Evolution 651897-1911 (2011).

    Google Scholar PubMed

  • Thompson, MJ & Jiggins, CD Supergenes and their role in evolution. Heredity 1131–8 (2014).

    CAS PubMed PubMed Central Google Scholar

  • Kirkpatrick, M. How and Why Chromosomal Inversions Evolve. PLoS Biol. 8e1000501 (2010).

    PubMed PubMed Central Google Scholar

  • Jay, P et al. Supergene evolution triggered by the introgression of a chromosomal inversion. Running. Biol. 281839–1845.e3 (2018).

    CAS PubMed Google Scholar

  • Edelman, NB et al. Genomic architecture and introgression shape butterfly radiation. Science 366594-599 (2019).

    ADS CAS PubMed PubMed Central Google Scholar

  • Norris, LC et al. Adaptive introgression in an African malaria mosquito coinciding with increased use of insecticide-treated nets. proc. Natl Acad. Science. UNITED STATES. 112815–820 (2015).

    ADS CAS PubMed PubMed Central Google Scholar

  • Brion, C., Caradec, C., Pflieger, D., Friedrich, A. & Schacherer, J. Pervasive phenotypic impact of a large non-recombinant introgressed region in yeast. Mol. Biol. Evol. 372520-2530 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Dixon, G., Kitano, J. & Kirkpatrick, M. The origin of a new sex chromosome by introgression between two sticklebacks. Mol. Biol. Evol. 3628–38 (2019).

    CAS PubMed Google Scholar

  • Ross, KG & Keller, L. Ecology and evolution of social organization: insight into fire ants and other highly eusocial insects. Ann. Rev. School. System 26631–656 (1995).

    Google Scholar

  • Wang, J. et al. A Y-type social chromosome causes alternate colony organization in fire ants. Nature 493664–668 (2013).

    ADS CAS PubMed Google Scholar

  • Keller, L. & Ross, KG Selfish genes: a green beard in the red fire ant. Nature 394573-575 (1998).

    Google Scholar CAS Announcements

  • Pracana, R. et al. Fire ant social chromosomes: differences in number, sequence, and expression of odorant-binding proteins. Evol. Lett. 1199-210 (2017).

    PubMed PubMed Central Google Scholar

  • Cohanim, AB, Amsalem, E., Saad, R., Shoemaker, D. & Privman, E. Evolution of olfactory functions on the fire ant social chromosome. Genome Biol. Evol. ten2947-2960 (2018).

    CAS PubMed PubMed Central Google Scholar

  • Martinez-Ruiz, C. et al. Genomic architecture and evolutionary antagonism result in allelic expression bias in the social supergene of red fire ants. eLife 9e55862 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Stolle, E. et al. Degenerative expansion of a young supergene. Mol. Biol. Evol. 36553–561 (2019).

    CAS PubMed Google Scholar

  • Yan, Z et al. Evolution of a supergene that regulates a trans-species social polymorphism. Nat. School. Evol. 4240-249 (2020).

    Google Scholar PubMed

  • Krieger, MJB & Ross, KG Identification of a major gene regulating complex social behavior. Science 295328–332 (2002).

    ADS CAS PubMed Google Scholar

  • Cohen, P. & Privman, E. The social supergene dates back to the speciation time of two Solenopsis species of fire ants. Science. representing ten11538 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Wurm, Y. et al. The fire ant genome Solenopsis invicta. proc. Natl. Acad. Science. UNITED STATES. 1085679–5684 (2011).

    ADS CAS PubMed PubMed Central Google Scholar

  • Privman, E. et al. Positive selection on sociobiological traits in invasive fire ants. Mol. School. 273116–3130 (2018).

    CAS PubMed Google Scholar

  • Seppey, M., Manni, M. & Zdobnov, EM BUSCO: Evaluation of genome assembly and annotation completeness. Methods Mol. Biol. 1962227-245 (2019).

    CAS PubMed Google Scholar

  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: Polynomial reconstruction of temporal species trees from partially resolved genetic trees. BMC Bioinform. 19153 (2018).

    Google Scholar

  • Shoemaker, DD, Ahrens, ME & Ross, KG Molecular phylogeny of fire ants from the Solenopsis saevissima group of species based on mtDNA sequences. Mol. Phylogenet. Evol. 38200–215 (2006).

    CAS PubMed Google Scholar

  • Fontana, S. et al. The social supergene of the fire ant is characterized by a large variation in the number of copies of genes and transposable elements. Mol. School. 29105-120 (2020).

    CAS PubMed Google Scholar

  • Kubatko, LS & Degnan, JH Inconsistency of phylogenetic estimates from concatenated data under coalescence. System Biol. 5617–24 (2007).

    CAS PubMed Google Scholar

  • Martin, SH & Van Belleghem, SM Exploring evolutionary relationships across the genome using topological weighting. Genetic 206429–438 (2017).

    PubMed PubMed Central Google Scholar

  • Ross, KG & Trager, JC Systematics and population genetics of fire ants (Solenopsis saevissima complex) from Argentina. Evolution 442113-2134 (1990).

    Google Scholar PubMed

  • Cohen, P. & Privman, E. Speciation and hybridization in invasive fire ants. BMC Evol. Biol. 19111 (2019).

    PubMed PubMed Central Google Scholar

  • Adams, BJ, Hooper-Bùi, LM, Strecker, RM & O’Brien, DM Raft formation by the red imported fire ant, Solenopsis invicta. J. Insect Sci. 11171 (2011).

    PubMed PubMed Central Google Scholar

  • Tschinkel, WR fire ants (Harvard Univ. Press, 2006).

  • Ross, KG & Shoemaker, D. Unexpected patterns of segregation distortion in a selfish supergene in the fire ant Solenopsis invicta. BMC Genet. 19101 (2018).

    CAS PubMed PubMed Central Google Scholar

  • DeHeer, CJ, Goodisman, MAD & Ross, KG Queen dispersal strategies in the multi-queen form of the fire ant Solenopsis invicta. A m. Nat. 153660–675 (1999).

    Google Scholar

  • DeHeer, CJ A comparison of the queen colony founding potential of single and multi-queen colonies of the fire ant Solenopsis invicta. Anim. Behviour 64655–661 (2002).

    Google Scholar

  • Pracana, R., Priyam, A., Levantis, I., Nichols, RA, and Wurm, Y. The fire ant social chromosome supergene Sb variant shows low diversity but high divergence from SB. Mol. School. 262864-2879 (2017).

    CAS PubMed PubMed Central Google Scholar

  • Hallar, BL, Krieger, MJB & Ross, KG Potential cause of lethality of an allele implicated in the social evolution of fire ants. Genetic 13169-79 (2007).

    Google Scholar PubMed

  • Kirkpatrick, M. & Barton, N. Chromosomal inversions, local adaptation and speciation. Genetic 173419-434 (2006).

    CAS PubMed PubMed Central Google Scholar

  • Berdan, EL, Blanckaert, A., Butlin, RK, and Bank, C. Accumulation of deleterious mutations and the long-term fate of chromosomal inversions. PLoS Genet. 17e1009411 (2021).

    CAS PubMed PubMed Central Google Scholar

  • Jay, P et al. The mutation load of a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat. Broom. 53288-293 (2021).

    CAS PubMed Google Scholar

  • Tuttle, EM et al. Divergence and functional degradation of a sex chromosome-like supergene. Running. Biol. 26344-350 (2016).

    CAS PubMed PubMed Central Google Scholar

  • Kupper, C. et al. A supergene determines highly divergent male reproductive morphs in the collarette. Nat. Broom. 4879–83 (2016).

    Google Scholar PubMed

  • Butlin, RK & Day, TH Gene and karyotypic selection on an inversion polymorphism in the algal fly, Coelopa frigida. Heredity 54267–274 (1985).

    Google Scholar

  • Moreau, CS & Bell, CD Test of the museum versus cradle of tropical biological diversity hypothesis: phylogeny, diversification and evolution of the ancestral biogeographical area of ​​ants. Evolution 672240-2257 (2013).

    Google Scholar PubMed

  • Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at arXiv [q-bio.GN] (2012).

  • Darriba, D. et al. ModelTest-NG: a new evolutionary tool for the selection of evolutionary DNA and protein models. Mol. Biol. Evol. 37291–294 (2020).

    MathSciNet CAS PubMed Google Scholar

  • Kozlov, AM, Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A rapid, scalable, and user-friendly tool for maximum probability phylogenetic inference. Bioinformatics 354453–4455 (2019).

    CAS PubMed PubMed Central Google Scholar

  • Galili, T. dendextend: an R package for visualizing, tuning and comparing hierarchical clustering trees. Bioinformatics 313718–3720 (2015).

    CAS PubMed PubMed Central Google Scholar

  • Ward, PS, Brady, SG, Fisher, BL & Schultz, TR The evolution of myrmicine ants: phylogeny and biogeography of a clade of hyperdiverse ants (Hymenoptera: Formicidae). System Entomol. 4061–81 (2015).

    Google Scholar

  • Minh, BQ et al. IQ-TREE 2: new models and efficient methods of phylogenetic inference in the genomic era. Mol. Biol. Evol. 371530-1534 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Green, RE et al. A draft Neanderthal genome sequence. Science 328710–722 (2010).

    ADS CAS PubMed PubMed Central Google Scholar

  • Joel C. Hicks